On Certain Extension Properties for the Space of Compact Operators

نویسنده

  • Timur Oikhberg
چکیده

Let Z be a fixed separable operator space, X ⊂ Y general separable operator spaces, and T : X → Z a completely bounded map. Z is said to have the Complete Separable Extension Property (CSEP) if every such map admits a completely bounded extension to Y ; the Mixed Separable Extension Property (MSEP) if every such T admits a bounded extension to Y . Finally, Z is said to have the Complete Separable Complementation Property (CSCP) if Z is locally reflexive and T admits a completely bounded extension to Y provided Y is locally reflexive and T is a complete surjective isomorphism. Let K denote the space of compact operators on separable Hilbert space and K0 the c0 sum of Mn’s (the space of “small compact operators”). It is proved that K has the CSCP, using the second author’s previous result that K0 has this property. A new proof is given for the result (due to E. Kirchberg) that K0 (and hence K) fails the CSEP. It remains an open question if K has the MSEP; it is proved this is equivalent to whether K0 has this property. A new Banach space concept, Extendable Local Reflexivity (ELR), is introduced to study this problem. Further complements and open problems are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties of b-weakly compact operators on Banach lattices

In this paper we give some necessary and sufficient conditions for which each Banach lattice  is    space and we study some properties of b-weakly compact operators from a Banach lattice  into a Banach space . We show that every weakly compact operator from a Banach lattice  into a Banach space  is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...

متن کامل

Compact composition operators on certain analytic Lipschitz spaces

We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.

متن کامل

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

One-point extensions of locally compact paracompact spaces

A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...

متن کامل

A new sequence space and norm of certain matrix operators on this space

In the present paper, we introduce the sequence space [{l_p}(E,Delta) = left{ x = (x_n)_{n = 1}^infty : sum_{n = 1}^infty left|  sum_{j in {E_n}} x_j - sum_{j in E_{n + 1}} x_jright| ^p < infty right},] where $E=(E_n)$ is a partition of finite subsets of the positive integers and $pge 1$. We investigate its topological properties and inclusion relations. Moreover, we consider the problem of fin...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999